Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Bioresour Technol ; 402: 130775, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701984

RESUMEN

Acidification recovery in anaerobic digestion of food waste is challenging. This study explored its in-situ recovery using a co-substrate of food waste and waste activated sludge. Fe3O4 and bentonite were used as conductor and carrier, respectively, to enhance AD performance under severe acidification. The application of Fe3O4-bentonite resulted in a 152% increase in cumulative methane in the Fe3O4-bentonite 10 digester, demonstrating its effectiveness in restoring the acidified AD system. In acidified systems, bentonite enhanced the diversity and richness of microbial communities due to its buffering capacity. The excessive non-conductive polysaccharides excreted by bacteria in extracellular polymeric substances reduced the possibility of electron transfer by Fe3O4. However, in the synergistic application of Fe3O4 and bentonite, this resistance was alleviated, increasing the possibility of direct interspecies electron transfer, and accelerating the consumption of volatile fatty acids. This approach of integrating carrier and conductive materials is significant for in-situ restoration of acidified systems.

2.
J Hazard Mater ; 470: 133740, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569335

RESUMEN

The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.


Asunto(s)
Antibacterianos , Biodegradación Ambiental , Microbiota , Norfloxacino , Contaminantes Químicos del Agua , Humedales , Antibacterianos/farmacología , Contaminantes Químicos del Agua/metabolismo , Norfloxacino/farmacología , Microbiota/efectos de los fármacos , Hydrocharitaceae/metabolismo , Hydrocharitaceae/genética , Farmacorresistencia Microbiana/genética , Ofloxacino , Bacterias/genética , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Genes Bacterianos , Fluoroquinolonas/metabolismo
3.
J Hazard Mater ; 466: 133620, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38286050

RESUMEN

Biogenic Mn oxides (BMOs), the main component of natural Mn oxides, closely relate to Cd in sediment. However, the immobilization behavior of Cd in sediments by BMOs is currently unclear. This study explores the role of BMO produced by the Mn-oxidizing fungus Cladosporium sp. XM01 in mediating the Cd immobilization and its biological response in sediment. A comparison is made with those of a chemical Mn oxide (CMO, triclinic birnessite). After 45 d of remediation, the results showed that the application of BMO reduced the extractable Cd by 32.20-64.40% based on the TCLP (toxicity characteristic leaching procedure) and by 26.16-51.43% based on the PBET (physiologically based extraction test). Additionally, BMO was more effective at immobilizing Cd than CMO in sediments. The BCR (Community Bureau of Reference) extraction results suggested that BMO converted some acid-soluble components (20.63-33.23%) of Cd into residual components (9.40-20.68%). Moreover, the urease and catalase activity gradually increased within the first 25 days and then stabilized after applying BMO. Microbial community analysis revealed that the addition of a high-dose BMO was more conducive to increasing microbial abundance and biodiversity. This study verifies that BMO is a low-cost, high-efficiency, and eco-friendly material for immobilizing Cd in sediment.


Asunto(s)
Cadmio , Cladosporium , Óxidos
4.
Chemosphere ; 306: 135560, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35792208

RESUMEN

The requirement of artificial aeration for increasing nitrogen removal in vertical flow constructed wetlands (VFCWs) brings extra energy consumption and complex maintenance. The feasibility of a modular design to replace artificial aeration for partially saturated VFCWs with palm bark as a carbon source (PSVFCW-pb) to achieve water quality control, especially nitrogen removal was evaluated. The PSVFCW-pb with a spatially separate structure and perforated peripheries for better oxygen diffusion had a promising total nitrogen removal (e.g., 66.4% at a dosage of 1.435 g/L of palm bark pretreated at 120 °C for 40 min) without additional aeration, while organic carbon removal was nearly unaffected. An appropriate increase of the palm bark dosage (≤1.435 g/L) resulted in higher nitrogen removal; however, a more palm bark (1.875 g/L) could not further increase nitrogen removal but caused color pollution. In addition, the removal of nitrogen by the modularized PSVFCW-pb was more sensitive to the ambient temperature than the removal of organic carbon and phosphorus, and the higher temperature was preferable. Notably, the more attractive property of the modular design is its great potential to improve nitrogen removal by conveniently altering the number and/or scale of oxic and oxygen-free modules. Finally, the relationships between the hydraulic load and inflow concentration were explored, by which the suitable hydraulic load could be flexibly adjusted based on real-time water quality to meet the specified surface water quality criteria in different seasons. This study provides a reliable CW design for controlling nutrient pollution in surface waters.


Asunto(s)
Nitrógeno , Humedales , Carbono , Desnitrificación , Nitrógeno/análisis , Oxígeno/química , Control de Calidad , Eliminación de Residuos Líquidos/métodos , Calidad del Agua
5.
J Hazard Mater ; 437: 129332, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35752045

RESUMEN

Fungal Mn oxidation is a crucial pathway in the biogeochemical cycling of toxic substances. However, few studies have aimed to promote the process of fungal Mn oxidation or systematically establish the mechanism of action. The effects of static magnetic field (SMF) treatment on the growth and Mn(II) oxidation capability of an Mn-oxidizing fungus, Cladosporium sp. XM01, were investigated. Results showed that 20.1 mT SMF treatment promoted the growth of strain XM01, and increased the Mn(II) removal rate by accelerating the adsorption and oxidation of Mn(II). In addition, the results of RNA sequencing suggested that SMF mainly stimulated energy metabolism and protein synthesis, accelerating the growth of strain XM01. Notably, KEGG pathway enrichment analysis found that SMF treatment significantly up-regulated the pathway of oxidative phosphorylation system, which is capable of stimulating the generation of superoxide (O2•-). Moreover, exposure to 20.1 mT SMF significantly promoted the activities of antioxidant enzymes including SOD and CAT. These results indicate that SMF treatment stimulates the generation of O2•- by strain XM01, and therefore, accelerates Mn(II) oxidation. This is a novel study using external SMF treatment to enhance fungal Mn(II) oxidation.


Asunto(s)
Antioxidantes , Cladosporium , Adsorción , Campos Magnéticos , Oxidación-Reducción
6.
Biosensors (Basel) ; 12(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35624608

RESUMEN

Two-photon probes with broad absorption spectra are beneficial for multi-color two-photon microscopy imaging, which is one of the most powerful tools to study the dynamic processes of living cells. To achieve multi-color two-photon imaging, multiple lasers and detectors are usually required for excitation and signal collection, respectively. However, one makes the imaging system more complicated and costly. Here, we demonstrate a multi-color two-photon imaging method with a single-wavelength excitation by using a signal separation strategy. The method can effectively solve the problem of spectral crosstalk by selecting a suitable filter combination and applying image subtraction. The experimental results show that the two-color and three-color two-photon imaging are achieved with a single femtosecond laser. Furthermore, this method can also be combined with multi-photon imaging technology to reveal more information and interaction in thick biological tissues.


Asunto(s)
Microscopía , Fotones , Reacciones Cruzadas
7.
Microsc Microanal ; : 1-7, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074025

RESUMEN

Due to less light scattering and a better signal-to-noise ratio in deep imaging, two-photon fluorescence microscopy (TPFM) has been widely used in biomedical photonics since its advent. However, optical aberrations degrade the performance of TPFM in terms of the signal intensity and the imaging depth and therefore restrict its application. Here, we introduce adaptive optics based on the genetic algorithm to detect the distorted wavefront of the excitation laser beam and then perform aberration correction to optimize the performance of TPFM. By using a spatial light modulator as the wavefront controller, the correction phase is obtained through a signal feedback loop and a process of natural selection. The experimental results show that the signal intensity and imaging depth of TPFM are improved after aberration correction. Finally, the method was applied to two-photon fluorescence lifetime imaging, which helps to improve the signal-to-noise ratio and the accuracy of lifetime analysis. Furthermore, the method can also be implemented in other experiments, such as three-photon microscopy, light-sheet microscopy, and super-resolution microscopy.

8.
Environ Res ; 204(Pt A): 111999, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34506787

RESUMEN

Overflow pollution is an undesired issue that commonly occurs in combined sewers under wet weather conditions. There is a lack of existing studies on the structural optimization of sewers to prevent siltation, and no previous study on egg-shaped sewers with this purpose has confirmed satisfactory anti-sedimentation performance. To achieve reduced sedimentation and lower energy loss under low- and high-flow conditions, respectively, the nondominated sorting genetic algorithm (NSGA-II) was adopted in this study based on a constant full filling discharge capacity equal to that of a 300 mm (diameter) circular sewer. The results showed that egg-shaped sewers with bottom and top arc radii of 58.3 and 116.6 mm, respectively, and a height of 408.1 mm performed significantly better than circular sewers (d = 300 mm). Notably, at a low flow ratio below 0.2, the shear stress of the optimized egg-shaped sewer was 5.2%-20.6% higher than that of the circular sewer. At a flow ratio of 0.2-0.6, both the egg-shaped and circular sewers were capable of maintaining a balanced amount of sediment between deposition and erosion. As the flow ratio increased to 0.6-1, both types of sewers completely scoured sediments: in this situation, the shear stress of the egg-shaped sewer was 5.5%-10.1% lower than that of the circular sewer, thus exhibiting reduced energy loss. This study indicates that egg-shaped sewers have an attractive future in replacing circular sewers for sedimentation prevention and cost control.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Algoritmos , Tiempo (Meteorología)
9.
Chemosphere ; 287(Pt 1): 132026, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34461328

RESUMEN

The applications of biogenic Mn oxides (BMOs) formed by Mn-oxidizing fungus in decontaminating heavy metals have attracted increasing attention. In this study, an efficient Mn-oxidizing fungus was isolated from soil and identified as Cladosporium halotolerans strain XM01. The Mn(II) adsorption and oxidation activities of this strain were investigated, showing significantly high removal and oxidation rates of soluble Mn(II) of 99.9% and 88.2%, respectively. Dynamic analysis of the Mn(II) removal process demonstrated the oxidation process of Mn(II) to Mn(III) was the rate-limiting step in the Mn(II) metabolic process. The XRD and SAED characterization showed that more layers were orderly accumulated along the c-axis with the formation of fungal BMOs, which might lead to the decrease in its specific surface area. The adsorption of Cd(II) by the formed BMOs was investigated and compared with two typical abiotic Mn oxides, indicating that the adsorption capacity decreased with the following order: immature BMO, mature BMO, δ-MnO2, acid birnessite, while the fixation capacity decreased in the order of acid birnessite, mature BMO, δ-MnO2, immature BMO. The inverse correlation between the capacity of Cd(II) adsorption and fixation of immature and mature BMOs was probably attributed to the increase in the layer stacking of BMOs. This result indicates an interesting phenomenon of high reservation of Cd(II) resulting from sequential transformation from strong adsorption to strong fixation with the formation of BMOs. This study offers considerable insights into fungal Mn oxidation mechanisms and provides theoretical guidance for fungal BMOs in heavy metals bioremediation.


Asunto(s)
Compuestos de Manganeso , Manganeso , Adsorción , Cadmio , Cladosporium , Hongos , Oxidación-Reducción , Óxidos
10.
Water Res ; 201: 117348, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34167011

RESUMEN

Ultrasound-enhanced coagulation is capable of effectively removing algal cells in algae-laden water. However, study differences in ultrasound settings, algal cell conditions and coagulant properties complicate the accurate evaluation of this technique for practical applications. No study has yet compared algae (and algal organic matters) removal among different frequencies of ultrasound in the ultrasound-coagulation process. In this study, the ultrasound at three typical frequencies, 29.4, 470 and 780 kHz, were applied for this purpose. The results showed that high-frequency ultrasound at 470 and 780 kHz had substantially greater improvement of coagulation than low-frequency ultrasound at 29.4 kHz (For example, the turbidity removal at 1 mg-Al/L of polymeric aluminum chloride increased by 204.2%, 571.9% and 563.2% under 29.4, 470 and 780 kHz ultrasound-coagulation, respectively, at 3.42 J/mL). Algal cells exhibited irreversible physical damage and the release of intracellular organic matters (such as odorous compounds) under low-frequency ultrasound with energy densities ≥ 3.42 J/mL, whereas high-frequency ultrasound was characterized by nonviolent impairment, including oxidative degradation and gas vacuole destruction (particularly reversible) resulting from ultrasound-induced radicals and cell resonance, respectively. Avoiding the severe destruction of algal cells is crucial for minimizing the toxicity and secondary pollution of the treated water. To achieve satisfactory removal, protected safety and better economy, the optimal energy density for each frequency was also determined. The findings from the analyses of the laboratory-cultured sample were confirmed via real eutrophic surface water. This study provides new insights and guidance for the ongoing study of harmful algal removal by ultrasound-enhanced coagulation.


Asunto(s)
Cianobacterias , Microcystis , Purificación del Agua , Oxidación-Reducción , Polímeros
11.
Membranes (Basel) ; 11(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073286

RESUMEN

We report a deep penetration microscopic imaging method with a non-diffracting Airy beam. The direct mapping of volume imaging in free space shows that the axial imaging range of the Airy beam is approximately 4 times that of the traditional Gaussian beam along the axial direction while maintaining a narrow lateral width. Benefiting from its non-diffracting property, the microscopic imaging with Airy beam illumination can acquire image structures through turbid medium and capture a volumetric image in a single frame. We demonstrate the penetration ability of the Airy microscopic imaging through a strongly scattering environment with 633 nm and 780 nm lasers. The performances of the volumetric imaging method were evaluated using HeLa cells and isolated mouse kidney tissue. The thick sample was scanned layer by layer in the Gaussian mode, however, in the Airy mode, the three-dimensional (3D) structure information was projected onto a two-dimensional (2D) image, which vastly increased the volume imaging speed. To show the characteristics of the Airy microscope, we performed dynamic volumetric imaging on the isolated mouse kidney tissue with two-photon.

12.
Water Res ; 201: 117334, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34161875

RESUMEN

Ultrasound techniques have gained increased interest in environmental remediation because of their promising performance and reagent-free nature. This study investigated the effects of ultrasound-coagulation on Microcystis aeruginosa removal, disinfection by-product (DBP) formation during subsequent chlorination, and acute toxicity and DBP-associated toxicity variations in chlorinated effluents. Compared with coagulation using polymeric aluminum chloride (5 mg-Al/L) alone, ultrasound-coagulation showed significantly enhanced turbidity removal, with the removal ratio increasing from 51% to 87%-96%. Although the addition of ultrasound may not substantially improve and even deteriorate the coagulation removal of DOC following the leakage of intracellular organic matter, the significantly improved DBP control was achieved as the cells dominated DBP formation. With the addition of ultrasound, the chlorine demand, aggregate DBP concentration and total organic halogen concentration reductions in the chlorinated M. aeruginosa solution increased from 15%, 47% and 52% (coagulation alone), respectively, to 56%-78%, 56%-80% and 68%-89%. The enhanced DBP mitigation was mainly attributed to the enhanced algal removal. Similarly, the acute toxicity and DBP-associated toxicity of chlorinated effluents further decreased from 100% and 0.0092 (coagulation alone) to 30%-88% and 0.0029-0.0060. Therefore, ultrasound-enhanced coagulation is a promising strategy for urgent algal removal, DBP mitigation and toxicity abatement.


Asunto(s)
Microcystis , Purificación del Agua , Cloro , Desinfección , Halogenación
13.
Ultrason Sonochem ; 69: 105278, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32738454

RESUMEN

There is a lack of studies elaborating the differences in mechanisms of low-frequency ultrasound-enhanced coagulation for algae removal among different ultrasound energy densities, which are essential to optimizing the economy of the ultrasound technology for practical application. The performance and mechanisms of low-frequency ultrasound (29.4 kHz, horn type, maximum output amplitude = 10 µm) -coagulation process in removing a typical species of cyanobacteria, Microcystis aeruginosa, at different ultrasound energy densities were studied based on a set of comprehensive characterization approaches. The turbidity removal ratio of coagulation (with polymeric aluminum salt coagulant at a dosage of 4 mg Al/L) was considerably increased from 44.1% to 59.7%, 67.0%, and 74.9% with 30 s of ultrasonic pretreatment at energy densities of 0.6, 1.11, and 2.22 J/mL, respectively, indicating that low-frequency ultrasound-coagulation is a potential alternative to effectively control unexpected blooms of M. aeruginosa. However, the energy density of ultrasound should be deliberately considered because a high energy density (≥18 J/mL) results in a significant release of algal organic matter, which may threaten water quality security. The specific mechanisms for the enhanced coagulation removal by low-frequency ultrasonic pretreatment under different energy densities can be summarized as the reduction of cell activity (energy density ≥ 0.6 J/mL), the slight release of negatively charged algal organic matter from cells (energy density ≥ 1.11 J/mL), and the aggregation of M. aeruginosa cells (energy density ≥ 1.11 J/mL). This study provides new insights for the ongoing study of ultrasonic pretreatment for the removal of algae via coagulation.


Asunto(s)
Incrustaciones Biológicas , Microcystis , Ultrasonido , Precipitación Química , Purificación del Agua/métodos
14.
Chemosphere ; 253: 126663, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32278914

RESUMEN

In this study, a comparative investigation of palm bark and corncob (a well-investigated material) for enhancing nitrogen removal efficiency in partially saturated vertical constructed wetland (PSVCW) was performed to evaluate an effective and cost-effective supplementary carbon source. The characteristics of the released organic matter and the release processes were analyzed through optical property characterization and a first-order release-adsorption model, respectively, and the nitrogen removal performance was evaluated in a series of pilot-scale PSVCWs. Results showed that the amount of organic matter released per unit mass of corncob was larger than that released per unit mass of palm bark under the same pretreatment conditions (control, heat, and alkaline pretreatment). The organic matter released from corncob has a higher apparent molecular weight and a higher degree of aromatic condensation than those of the organic matter released from palm bark, whereas the organic matter released from palm bark has higher and more stable bioavailability. Moreover, palm bark showed a more significant improvement of release capacity with the heat and alkaline pretreatment methods. Pilot-scale studies revealed that PSVCW using palm bark as the supplementary carbon source has a longer replacement cycle and higher total nitrogen (TN) removal efficiency than that using corncob, indicating that palm bark can be considered an effective and inexpensive supplementary carbon source. This study provides initial guidance for the ongoing research on supplementary carbon sources for improving nitrogen removal efficiency in constructed wetlands.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Humedales , Adsorción , Carbono , Desnitrificación , Cinética , Nitrógeno , Proyectos Piloto , Corteza de la Planta
15.
RSC Adv ; 8(55): 31440-31454, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35548199

RESUMEN

Modified Mg3Al layered double hydroxide (LDH) intercalated with dodecylsulfate anion composites, which were designated as SDS-LDH composites, were synthesized by coprecipitation. The samples were characterized using SEM, EDX, FT-IR, zeta potential analysis, and XRD. The results showed that the SDS-LDH composites contain a thicker and larger porous interconnected network than inorganic LDH due to the enlarged inter-layer distance. The outstanding adsorption performance of SDS-LDH composites toward 17ß-estradiol (E2) was investigated under different conditions, including solution pH, adsorbent dosage, ion strength, reaction time, and temperature. When the solution pH was 7 and the adsorbent dosage was 2 g L-1, the removal rate of E2 reached the maximum at 94%, whereas inorganic LDH displayed a poor E2 removal rate of 10%. The presence of various ions (Na+, SO4 2-, CI-, and H2PO4 -) in aqueous solution exerted no significant adverse effects on the adsorption process. The adsorption equilibrium was reached within 20 min, and the adsorption fitted well with the pseudo-second-order model and the Freundlich isotherm. The thermodynamic test revealed that the adsorption process was spontaneous and endothermic. Phosphorus was selected as the index for evaluating the adsorption capacity of SDS-LDH composites for inorganic ions. The removal rates of total phosphorus and PO4 3- were 43.71% and 55.93% for SDS-LDH composites at 2 g L-1. The removal rate of PO4 3- reached up to 85% when the contact time was 120 min and the dosage was 3 g L-1 for SDS-LDH composites, which were approximately close to those of inorganic LDH of 30 min and 2 g L-1, respectively. This finding indicates that the removal capacity of SDS-LDH composites for PO4 3- decreased after the dodecylsulfate anions intercalated into the interlayer. The composites retained their high efficiency and stability after desorption and regeneration with alkali treatment. This study demonstrated that SDS-LDH composites are a promising adsorbent for the recovery and abatement of trace-level E2 in secondary effluents of wastewater treatment plants.

16.
Water Res ; 105: 615-624, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27694043

RESUMEN

Chemical conditioning is one of the most important processes for improve the performance of sludge dewatering device. Aluminum salt coagulant has been widely used in wastewater and sludge treatment. It is generally accepted that pre-formed speciation of aluminum salt coagulants (ASC) has an important influence on coagulation/flocculation performance. In this study, the interaction mechanisms between sludge particles and aluminum salt coagulants with different speciation of hydroxy aluminum were investigated by characterizing the changes in morphological and EPS properties. It was found that middle polymer state aluminum (Alb) and high polymer state aluminum (Alc) performed better than monomer aluminum and oligomeric state aluminum (Ala) in reduction of specific resistance to filtration (SRF) and compressibility of wastewater sludge due to their higher charge neutralization and formed more compact flocs. Sludge was significantly acidified after addition Ala, while pH was much more stable under Alb and Alc conditioning due to their hydrolysis stability. The size of sludge flocs conditioned with Alb and Alc was small but flocs structure was denser and more compact, and floc strength is higher, while that formed from Ala is relatively large, but floc structure was loose, floc strength is relatively lower. Scanning environmental microscope analysis revealed that sludge flocs conditioned by Alb and Alc (especially PAC2.5 and Al13) exhibited obvious botryoidal structure, this is because sludge flocs formed by Alb and Alc were more compact and floc strength is high, it was easy generated plentiful tiny channels for water release. In addition, polymeric aluminum salt coagulant (Alb, Alc) had better performance in compressing extracellular polymeric substances (EPS) structure and removing sticky protein-like substances from soluble EPS fraction, contributing to improvement of sludge filtration performance. Therefore, this study provides a novel solution for improving sludge dewatering property by controlling aluminum speciation.


Asunto(s)
Aguas del Alcantarillado/química , Aguas Residuales , Aluminio , Filtración , Floculación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA